Matematika Study Center

Better than Nothing

10 SMA Soal Pembahasan Logika Matematika

Matematikastudycenter.com- Contoh soal dan pembahasan logika matematika SMA materi kelas 10 tercakup di dalamnya negasi atau ingkaran suatu pernyataan, penggabungan pernyataan majemuk dengan konjungsi, disjungsi, implikasi, biimplikasi dan penarikan kesimpulan dari beberapa premis dan pernyataan yang setara.

Soal No. 1
Tentukan negasi dari pernyataan-pernyataan berikut:

a) Hari ini Jakarta banjir.

b) Kambing bisa terbang.

c) Didi anak bodoh

d) Siswa-siswi SMANSA memakai baju batik pada hari Rabu.


Pembahasan
a) Tidak benar bahwa hari ini Jakarta banjir.
b) Tidak benar bahwa kambing bisa terbang.
c) Tidak benar bahwa Didi anak bodoh
d) Tidak benar bahwa siswa-siswi SMANSA memakai baju batik pada hari Rabu.

Atau boleh juga dengan format berikut:
a) Hari ini Jakarta tidak banjir.
b) Kambing tidak bisa terbang.
c) Didi bukan anak bodoh
d) Siswa-siswi SMANSA tidak memakai baju batik pada hari Rabu.

Soal No. 2
Tentukan negasi (ingkaran) dari pernyataan-pernyataan berikut:
a) p : Semua dokter memakai baju putih saat bekerja.
b) p : Semua jenis burung bisa terbang
c) p : Semua anak mengikuti ujian fisika hari ini.

Pembahasan
Pernyataan yang memuat kata "Semua" atau "Setiap" negasinya memuat kata "Beberapa" atau "Ada" seperti berikut:
a) ~p : Ada dokter tidak memakai baju putih saat bekerja.
b) ~p : Beberapa jenis burung tidak bisa terbang
c) ~p : Beberapa anak tidak mengikuti ujian fisika hari ini.

Soal No. 3
Ingkaran dari pernyataan “Beberapa bilangan prima adalah bilangan genap” adalah....
A. Semua bilangan prima adalah bilangan genap.
B. Semua bilangan prima bukan bilangan genap.
C. Beberapa bilangan prima bukan bilangan genap.
D. Beberpa bilangan genap bukan bilangan prima.
E. Beberapa bilangan genap adalah bilangan prima.
(Soal UN Matematika Tahun 2008 P12)

Pembahasan
p : Beberapa bilangan prima adalah bilangan genap
~p : Semua bilangan prima bukan bilangan genap

Soal No. 4
Tentukan pernyataan majemuk hasil penggabungan pasangan-pasangan pernyataan berikut dengan menggunakan operasi konjungsi (DAN):
a) p : Hari ini Jakarta hujan
    q : Hari ini Jakarta banjir

b) p : Iwan memakai topi
    q : Iwan memakai dasi

c) p : Mahesa  anak jenius.
    q : Mahesa anak pemalas.

Pembahasan
a) p : Hari ini Jakarta hujan
    q : Hari ini Jakarta banjir

p ∧ q : Hari ini Jakarta hujan dan banjir

b) p : Iwan memakai topi
    q : Iwan memakai dasi

p ∧ q : Iwan memakai topi dan dasi

c) p : Mahesa anak jenius.
    q : Mahesa anak pemalas.

p ∧ q : Mahesa anak jenius tetapi pemalas

Kata "dan"  bisa diganti dengan "tetapi", "walaupun", "meskipun" selaraskan dengan pernyataan.

Soal No. 5
Diberikan dua pernyataan sebagai berikut:
a) p : Hari ini Jakarta hujan lebat.
    q : Hari ini aliran listrik putus.

Nyatakan dengan kata-kata:
a) p ∧ q
b) p ∧ ~q
c) ~p ∧ q
d) ~p ∧ ~q

Pembahasan
a) Hari ini Jakarta hujan lebat dan aliran listrik putus
b) Hari ini Jakarta hujan lebat dan aliran listrik tidak putus
c) Hari ini Jakarta tidak hujan lebat dan aliran listrik putus
d) Hari ini Jakarta tidak hujan lebat dan aliran listrik tidak putus

Soal No. 6
Diberikan data:
Pernyataan p bernilai salah
Pernyataan q bernilai benar

Tentukan nilai kebenaran dari konjungsi di bawah ini:
a) p ∧ q
b) p ∧ ~q
c) ~p ∧ q
d) ~p ∧ ~q

Pembahasan
Tabel Nilai kebenaran untuk konjungsi :

p q p ∧ q
B B B
B S S
S B S
S S S



Terlihat bahwa konjungsi bernilai benar jika kedua pernyataan bernilai benar.
Kita terapkan pada soal salah satunya dengan cara tabel:

p q ~p ~q p ∧ q p ∧ ~q ~p ∧ q ~p ∧ ~q
S B B S S S B S


Dari tabel di atas
a) p ∧ q bernilai salah
b) p ∧ ~q bernilai salah
c) ~p ∧ q bernilai benar
d) ~p ∧ ~q bernilai salah

Soal No. 7
Gabungkan pasangan pernyataan-pernyataan berikut dengan menggunakan operasi disjungsi (ATAU):
a) p : Ibu memasak ayam goreng
   q : Ibu membeli soto babat di pasar

b) p : Pak Bambang mengajar matematika
   q : Pak Bambang mengajar bahasa inggris

Pembahasan
a) p : Ibu memasak ayam goreng
   q : Ibu membeli soto babat di pasar

   p ∨ q : Ibu memasak ayam goreng atau membeli soto babat di pasar.

b) p : Pak Bambang mengajar matematika
   q : Pak Bambang mengajar bahasa inggris

   p ∨ q : Pak Bambang mengajar matematika atau bahasa inggris

Soal No. 8
Diberikan nilai dari pernyataan p dan q sebagai berikut:

p q
B S



Tentukan nilai kebenaran dari disjungsi berikut:
a) p ∨ q
b) p ∨ ~q
c) ~p ∨ q

Pembahasan
Tabel lengkap dari disjungsi sebagai berikut:

. p q p ∨ q
1 B B B
2 B S B
3 S B B
4 S S S

Dari data soal dapat diperoleh nilai dari negasi p maupun negasi q, tinggal dibalikkan saja B jadi S, S jadi B

p q ~p ~q
B S S B


a) p ∨ q
p bernilai B, q bernilai S
Pasangan B S menghasilkan nilai B (lihat tabel kebenaran nomor 2)

b) p ∨ ~q
p bernilai B, ~q bernilai B (kebalikan dari nilai q)
Pasangan B B menghasilkan nilai B (lihat tabel kebenaran nomor 1)

c) ~p ∨ q
~p bernilai S (kebalikan dari nilai p), q bernilai S
Pasangan S S menghasilkan nilai S (lihat tabel kebenaran nomor 4)

Soal No. 9
Negasi dari pernyataan " Matematika tidak mengasyikkan atau membosankan" adalah...
A. Matematika mengasyikkan atau membosankan
B. Matematika mengasyikkan atau tidak membosankan
C. Matematika mengasyikkan dan tidak membosankan
D. Matematika tidak mengasyikkan dan tidak membosankan
E. Matematika tidak mengasyikkan dan membosankan
(Soal UN Matematika 2008)

Pembahasan
Untuk menentukan negasi dari suatu konjungsi atau disjungsi perhatikan dalil de Morgan berikut:
~(p ∧ q ) ≅ ~p ∨ ~q
~(p ∨ q) ≅ ~p ∧ ~ q

p : Matematika tidak mengasyikkan

q : Matematika  membosankan

Negasi untuk p dan q masing-masing adalah:
~p : Matematika mengasyikkan
~q : Matematika tidak membosankan

Gunakan dalil de Morgan untuk negasi disjungsi

~(p ∨ q) ≅ ~p ∧ ~ q

sehingga

~p ∧ ~ q : Matematika mengasyikkan dan tidak membosankan

Soal No. 10
Tentukan negasi dari pernyataan:
a) Bogor hujan lebat dan Jakarta tidak banjir.
b) Hari ini tidak mendung dan Budi membawa payung

Pembahasan
Ingkaran (negasi) dari konjungsi.
a) Bogor hujan lebat dan Jakarta tidak banjir.
Ingat:
~(p ∧ q ) ≅ ~p ∨ ~q
Sehingga ingkarannya adalah:
Bogor tidak hujan lebat atau Jakarta banjir.

b) Hari ini tidak mendung dan Budi membawa payung
Ingat:
~(p ∧ q ) ≅ ~p ∨ ~q
Sehingga ingkarannya adalah:
Hari ini mendung atau Budi tidak membawa payung

Soal No. 11
Diberikan pernyataan:
p : Tahun ini kemarau panjang.
q : Tahun ini hasil padi meningkat.
Nyatakan dengan kata-kata:
a) p → q
b) ~p → ~q
c) p → ~q

Pembahasan
Implikasi, formatnya adalah "jika p maka q" sehingga:
a) p → q : Jika tahun ini kemarau panjang maka hasil padi meningkat
b) ~p → ~q : Jika tahun ini tidak kemarau panjang maka hasil padi tidak meningkat.
c) p → ~q : Jika tahun ini kemarau panjang maka hasil padi tidak meningkat.

Soal No. 12
Tentukan ingkaran dari pernyataan:
"Jika cuaca cerah maka maka Amir bermain sepakbola"

Pembahasan
Ingkaran dari sebuah implikasi  p → q adalah p dan ~q

~(p → q) ≅  p ∧ ~ q

sehingga ingkaran dari pernyataan di atas adalah "Cuaca cerah dan Amir tidak bermain sepakbola"

Soal No. 13
Ingkaran dari pernyataan “Semua pasien mengharapkan sehat dan dapat beraktifitas kembali” adalah…
A. Beberapa pasien mengharapkan sehat dan dapat beraktifitas kembali.
B. Beberapa pasien mengharapkan tidak sehat atau tidak dapat beraktifitas kembali.
C. Beberapa pasien mengharapkan sehat tetapi tidak dapat beraktifitas kembali.
D. Beberapa pasien mengharapkan sehat tetapi dapat beraktifitas kembali.
E. Semua pasien mengharapkan sehat juga dapat beraktifitas kembali.

Pembahasan
Negasi dari sebuah pernyataan.
Bentuk yang sering muncul adalah:


“Semua pasien mengharapkan sehat dan dapat beraktifitas kembali”

Pernyataannya dalam bentuk (p ∧ q) jadi ingkarannya adalah ~p ∨ ~q.
Terjemahannya dalam kalimat menjadi
“Beberapa pasien mengharap tidak sehat atau tidak dapat beraktifitas kembali”. Cari kalimat yang sama di pilihannya.

Soal No. 14
Perhatikan pernyataan berikut:
"Jika cuaca mendung maka Charli membawa payung"

Tentukan konvers, invers dan kontraposisi dari pernyataan di atas!

Pembahasan
Dari implikasi p → q

p : Cuaca mendung
q : Charli membawa payung

Konversnya adalah q → p
yaitu "Jika Charli membawa payung maka cuaca mendung"

Inversnya adalah ~p → ~q
yaitu "Jika cuaca tidak mendung maka Charli tidak membawa payung"

Kontraposisinya adalah ~q → ~p
yaitu "Jika Charli tidak membawa payung maka cuaca tidak mendung"

Soal No. 15
Kontraposisi dari "Jika semua warga negara membayar pajak maka pembangunan berjalan lancar" adalah....
A. jika pembangunan tidak berjalan lancar maka ada warga negara yang tidak membayar pajak
B. jika tidak semua warga negara membayar pajak maka pembangunan tidak berjalan lancar
C. jika semua warga negara membayar pajak maka pembangunan tidak berjalan lancar
D. jika pembangunan berjalan lancar maka tidak semua warga negara membayar pajak
E. jika pembangunan tidak berjalan lancar maka semua warga negara tidak membayar pajak
(Soal Ebtanas 1995)

Pembahasan
p : semua warga negara membayar pajak
q : pembangunan berjalan lancar

Konversnya adalah ~q → ~p yaitu "Jika pembangunan tidak berjalan lancar maka ada warga negara yang tidak membayar pajak"

Soal No. 16
Premis 1 : Jika Budi rajin berolahraga maka badannya sehat.
Premis 2 : Budi rajin berolahraga.

Pembahasan
Modus Ponens
p → q
p
________
∴ q

Jika Budi rajin berolahraga maka badannya sehat.
                     p                                q

Budi rajin berolahraga
              p

Kesimpulan adalah q : Badan Budi sehat

Soal No. 17
Tentukan kesimpulan dari :
Premis 1 : Jika hari cerah maka Budi bermain bola.
Premis 2 : Budi tidak bermain bola.

Pembahasan
p : Hari cerah
q : Budi bermain bola

Penarikan kesimpulan dengan prinsip Modus Tollens
p → q
~q
_______
∴ ~p

Sehingga kesimpulannya adalah " Hari tidak cerah "

Soal No. 18
Tentukan kesimpulan dari :
Premis 1 : Jika Budi rajin belajar maka ia disayang ayah.
Premis 2 : Jika Budi disayang ayah maka ia disayang ibu.

Pembahasan
Penarikan kesimpulan dengan prinsip silogisme
p → q
q → r
_________
∴ p → r

Sehingga kesimpulannya adalah " Jika Budi rajin belajar maka ia disayang ibu"

Soal No. 19
Diketahui pernyataan :
1. Jika hari panas, maka Ani memakai topi.
2. Ani tidak memakai topi atau ia memakai payung.
3. Ani tidak memakai payung.

Kesimpulan yang sah adalah...
A. Hari panas.
B. Hari tidak panas.
C. Ani memakai topi.
D. Hari panas dan Ani memakai topi.
E. Hari tidak panas dan Ani memakai topi.

Pembahasan
Premis (1) Jika hari panas, maka Ani memakai topi.
Premis (2) Ani tidak memakai topi atau ia memakai payung.
Premis (3) Ani tidak memakai payung.

p : Hari panas
q : Ani memakai topi
r : Ani memakai payung

Selesaikan terlebih dahulu premis (1) dan (2) kemudian digabungkan dengan premis (3)

Dari premis (1) dan (2)
Premis (1) Jika hari panas, maka Ani memakai topi.
Premis (2) Ani tidak memakai topi atau ia memakai payung.

p → q
~q ∨ r

Ingat bentuk berikut:
~q ∨ r ekivalen dengan q → r

sehingga bentuk di atas menjadi :
p → q
q → r
_____
∴ p → r      (Silogisme)

Dari sini gabungkan dengan premis ketiga:
p→ r
~r
_____
∴ ~p           (Modus Tollens)

Kesimpulan akhirnya adalah ~p yaitu "Hari tidak panas"

Soal No. 20
Diketahui premis-premis berikut:
Premis 1 : Jika masyarakat membuang sampah pada tempatnya maka lingkungan bersih.
Premis 2: Jika lingkungan bersih maka hidup akan nyaman.

Kesimpulan yang sah dari kedua premis tersebut adalah…
A. Jika masyarakat membuang sampah pada tempatnya maka hidup akan nyaman.
B. Masyarakat membuang sampah pada tempatnya maka hidup akan nyaman.
C. Jika masyarakat membuang sampah tidak pada tempatnya maka lingkungan tidak akan bersih.
D. Jika masyarakat membuang sampah pada tempatnya maka lingkungan tidak bersih.
E. Masyarakat membuang sampah pada tempatnya tetapi lingkungan tidak bersih.

Pembahasan
Penarikan kesimpulan. Premisnya berpola silogisme:


Sehingga kesimpulannya adalah “Jika masyarakat membuang sampah pada tempatnya maka hidup akan nyaman.”

Soal No. 21
Diberikan pernyataan:

"Jika pemimpin jujur maka rakyat tentram "

Buatlah dua buah pernyataan yang setara dengan pernyataan di atas!

Pembahasan
Rumus:

Pernyataan yang setara dengan sebuah implikasi p → q

(i) dengan menggunakan format rumus p → q setara dengan ~p ∨ q
"Jika pemimpin jujur maka rakyat tentram "
setara dengan
"Pemimpin tidak jujur atau rakyat tentram "

(ii) dengan memakai format rumus p → q setara dengan ~q → ~p
"Jika pemimpin jujur maka rakyat tentram "
setara dengan
"Jika rakyat tidak tentram maka pemimpin tidak jujur "


Soal No. 22
Pernyataan yang setara dengan “jika harga BBM naik maka harga kebutuhan pokok akan naik” adalah…
A. Harga BBM naik dan harga kebutuhan pokok naik.
B. Harga BBM tidak naik atau harga kebutuhan pokok akan naik.
C. Jika harga BBM tidak naik maka harga kebutuhan pokok akan naik.
D. Jika harga BBM tidak naik maka harga kebutuhan pokok tidak naik.
E. Jika harga BBM tidak naik maka harga kebutuhan pokok akan turun.
(Logika - UN SMA IPS 2013)

Pembahasan
Seperti contoh di atas, dengan penggunaan format yang (i):
“Jika harga BBM naik maka harga kebutuhan pokok akan naik”
setara dengan
"Harga BBM tidak naik atau harga kebutuhan pokok akan naik"
Jawaban: B

 

Comments  

 
#18 Veu 2014-10-20 10:09
realy easy to learn, thanks
Quote
 
 
#17 Andre 2014-08-01 15:00
Keren Gan,,
sangant mudah untuk dimengerti :lol:
Quote
 
 
#16 Anand 2014-07-27 05:00
:lol: :lol: thanks atas infonya, sangat membantu saya yang sedang ikut lomba matematika logika
Quote
 
 
#15 doni 2014-07-19 11:26
matur nuwun sangat berguna sekali 8)
Quote
 
Joomla Templates: by JoomlaShack
Template Upgrade by Joomla Visually